Orthonormal mode sets for the two-dimensional fractional Fourier transformation
نویسندگان
چکیده
منابع مشابه
Orthonormal mode sets for the two-dimensional fractional Fourier transformation.
A family of orthonormal mode sets arises when Hermite-Gauss modes propagate through lossless first-order optical systems. It is shown that the modes at the output of the system are eigenfunctions for the symmetric fractional Fourier transformation if and only if the system is described by an orthosymplectic ray transformation matrix. Essentially new orthonormal mode sets can be obtained by lett...
متن کاملNonseparable two-dimensional fractional fourier transform.
Previous generalizations of the fractional Fourier transform to two dimensions assumed separable kernels. We present a nonseparable definition for the two-dimensional fractional Fourier transform that includes the separable definition as a special case. Its digital and optical implementations are presented. The usefulness of the nonseparable transform is justified with an image-restoration exam...
متن کاملTwo dimensional discrete fractional Fourier transform
Fractional Fourier transform (FRFT) performs a rotation of signals in the time—frequency plane, and it has many theories and applications in time-varying signal analysis. Because of the importance of fractional Fourier transform, the implementation of discrete fractional Fourier transform will be an important issue. Recently, a discrete fractional Fourier transform (DFRFT) with discrete Hermite...
متن کاملTwo-dimensional affine generalized fractional Fourier transform
As the one-dimensional (1-D) Fourier transform can be extended into the 1-D fractional Fourier transform (FRFT), we can also generalize the two-dimensional (2-D) Fourier transform. Sahin et al. have generalized the 2-D Fourier transform into the 2-D separable FRFT (which replaces each variable 1-D Fourier transform by the 1-D FRFT, respectively) and 2D separable canonical transform (further rep...
متن کاملTwo-Dimensional Fourier Transformation in NMR
The idea of two-dimensional Fourier transformation was originated by Jeener (1) in 1971, but the very wide significance of his proposal does not seem to have been generally realized until several years later, when several elegant applications were described (2-6). The basic idea is very simple. In modern nmr spectrometers, spectra are normally obtained by Fourier transformation of a transient f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Letters
سال: 2007
ISSN: 0146-9592,1539-4794
DOI: 10.1364/ol.32.001226